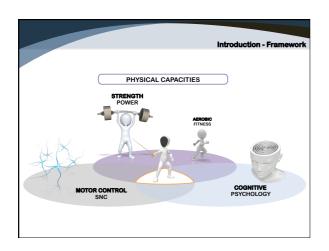
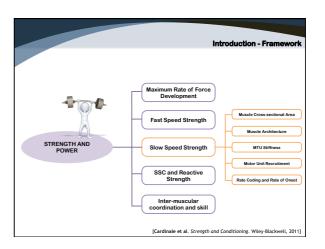
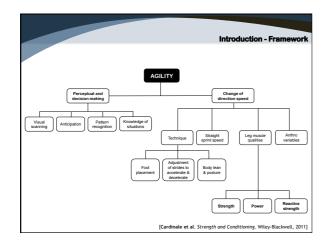
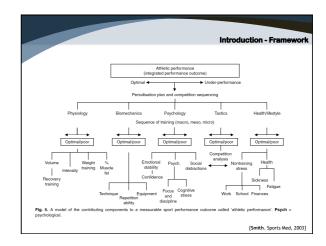
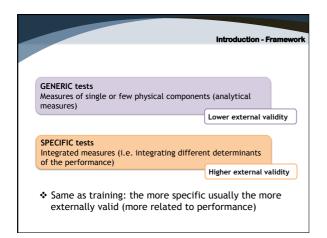

Methodological issues of functional assessment in sport

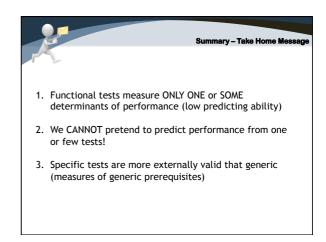


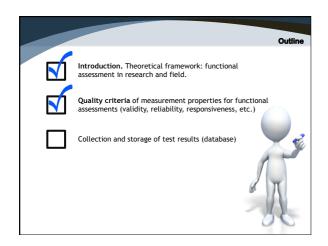


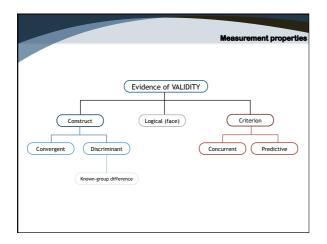


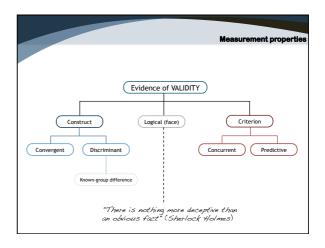


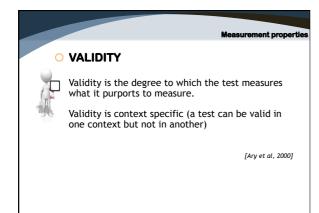


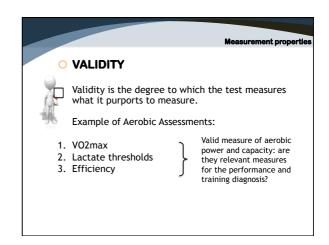


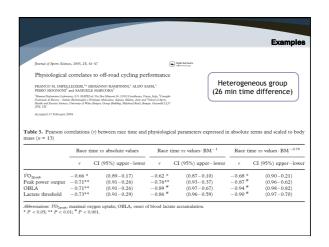


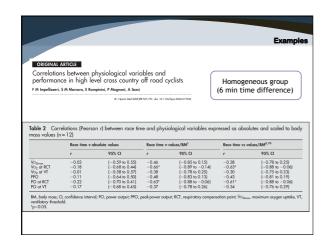


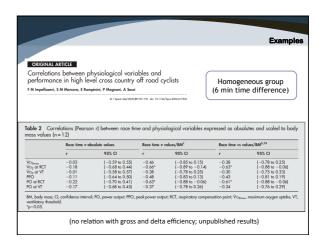






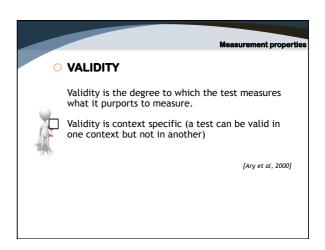



Determinants of Endurance Performance
[Coyle, 1995; Joyner and Coyle, 2008]


 VO_{2max} (aerobic power)
 Determinant in heterogenous group

 Lactate thresholds
 Determinant in a group with homogenous aerobic power

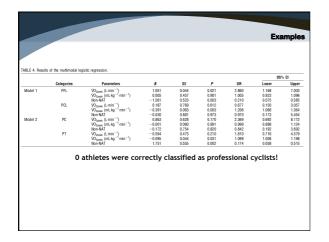
 Efficiency
 Determinant in a group of endurance athlete with homogenous aerobic power and lactate threshold



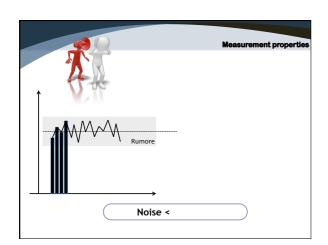
Determinants of Endurance Performance

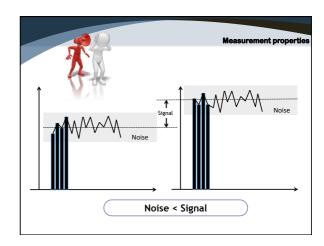
1. VO_{2max}, lactate thresholds and efficiency can be valid assessments but ONLY explain a small percentage of endurance performance in an homogeneous group of athletes (in MTB as in other sports).

2. More research is needed to identify the determinants of endurance performance and therefore the corresponding tests [e.g. psychobiological model; Marcora, 2009; 2010]

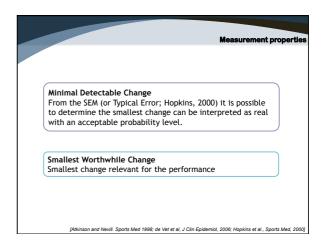


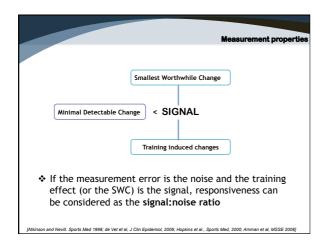
Aerobic Fitness Variables Do Not Predict the Professional Career of Young Cyclists

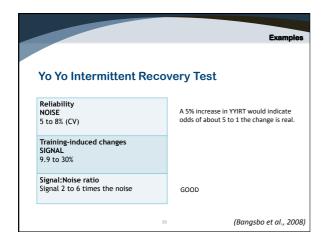

PAOLO MENASPÀ¹, ALDO SASS¹¹, and FRANCO M. IMPELLIZZER¹²²

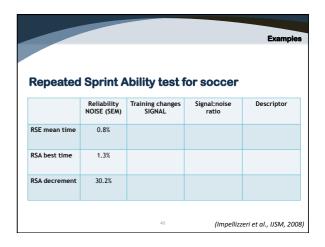

¹Mapei Sport. Causellanza, ITALY; ¹Department of Research and Development, Schulthess Klinik, Zurich, SWITZERLAND; and ¹Research Centre for Bioengineering and Motor Sciences, Rovereto, ITALY

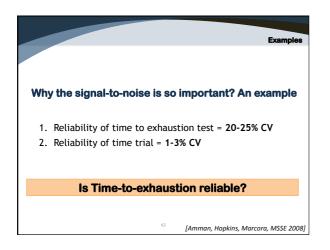
e not selected (non-NAT).	NAT (n = 72)		Non-NAT (n = 237)			,,	elected for the national team (NAT) a		
	Mean	SD	Mean	SD	P	Partial y2	AUC	95% CI	
pa (yr) sight (cm) sight (cm) soly mass (kg) body far' "press (Lmin' -1) "press (Lmin' -1) "pass (mL kgr -1 min' -1) pa at RCP (Lmin' -1) pa at RCP (mL kgr -1 min' -1) pa at V _T (mL kgr -1 min' -1) pa at V _T (mL kgr -1 min' -1) pa at V _T (mL kgr -1 min' -1) 10 at V _T (mL kgr -1 min' -1) 11 < P = 0 n S = 0 c for the NAT, m = 202 for the normal control of	17.5 179 70.0 5.6 5.017 72.1 4.321 62.1 3.379 48.5 e non-MAT.	0.5 7 8.0 2.0 0.622 7.4 0.530 6.8 0.484 6.1	17.5 177 65.0 5.9 4.584 70.7 3.891 59.9 3.065 47.3	0.5 6 6.4 1.9 0.564 6.7 0.498 6.1 0.419 5.4	0.639 0.025 <0.001 0.352 <0.001 0.130 <0.001 0.013 <0.001 0.096	0.001 0.016 0.087 0.003 0.092 0.007 0.115 0.020 0.086 0.009	0.576 0.687 0.454 0.689 0.557 0.725 0.594 0.673 0.552	0.499-0.853* 0.613-0.762† 0.375-0.534 0.619-0.759† 0.478-0.635 0.657-0.792† 0.517-0.670* 0.603-0.743† 0.475-0.630	

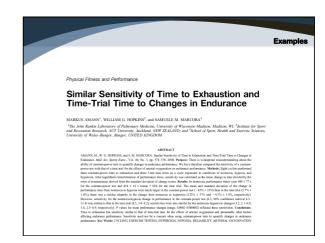


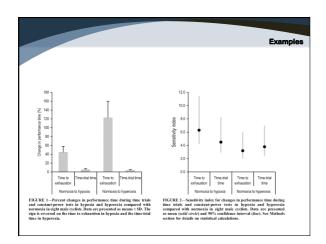

	ts of the multimodal lo	,					95	% CI
	Categories	Parameters	В	SE	P	OR	Lower	Upp
Model 1	PFL	ÝO₂ _{seak} (L-min ⁻¹)	1.051	0.044	0.021	2.860	1.168	7.00
		VO _{2peak} (mL·kg ⁻¹ ·min ⁻¹)	0.005	0.457	0.901	1.005	0.923	1.09
		Non-NAT	-1.561	0.523	0.003	0.210	0.075	0.58
	PCL	VO _{2peak} (L-min ⁻¹)	0.187	0.769	0.612	0.677	0.150	3.05
		VO _{2peak} (mL·kg ⁻¹ ·min ⁻¹)	-0.391	0.063	0.003	1.206	1.066	1.36
		Non-NAT	-0.030	0.881	0.973	0.970	0.173	5.45
Model 2	PC	VO _{2peak} (L-min ⁻¹)	0.863	0.628	0.170	2.369	0.692	8.11
		VO _{zpeak} (mL·kg ⁻¹ ·min ⁻¹) Non-NAT	-0.001	0.060	0.991	0.999	0.888	1.12
	PT		-0.172 -0.594	0.754	0.820	0.842 1.810	0.192	3.69 4.57
	P1	VO _{2peak} (L·min ⁻¹) VO _{2peak} (mL·kg ⁻¹ ·min ⁻¹)	-0.594 -0.095	0.473	0.210	1.810	1.008	1.19
		Non-NAT	1,751	0.555	0.002	0.174	0.058	0.51
	0	athletes were co	rrectly cl	assified	as profe	ssional c	yclists!	

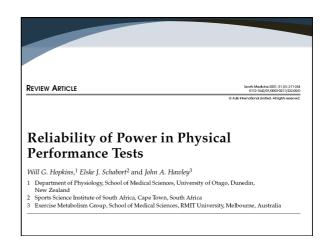




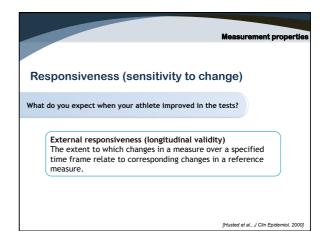


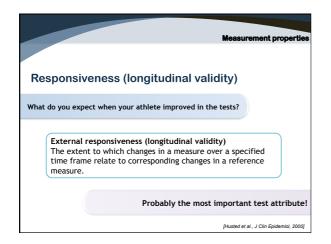


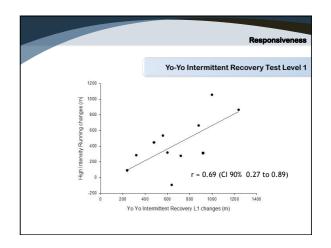


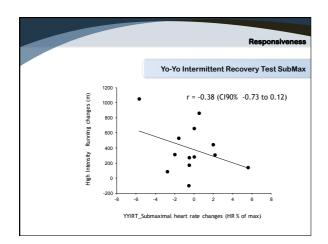

				Examp			
Repeated Sprint Ability test for soccer							
	Reliability NOISE (SEM)	Training changes SIGNAL	Signal:noise ratio	Descriptor			
RSE mean time	0.8%	2.1%	2.6				
RSA best time	1.3%	1%	0.8				
		10%	0.3				

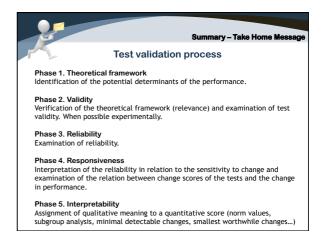
Sprint A	ibility test 1	or soccer	
Reliability NOISE (SEM)	Training changes SIGNAL	Signal:noise ratio	Descriptor
0.8%	2.1%	2.6	GOOD
1.3%	1%	0.8	POOR
30.2%	10%	0.3	VERY POOR
	Reliability NOISE (SEM) 0.8%	Reliability NOISE (SEM) 0.8% 1.3% Training changes SIGNAL 2.1% 1.3%	NOISE (SEM) SIĞNAL ratio 0.8% 2.1% 2.6 1.3% 1% 0.8

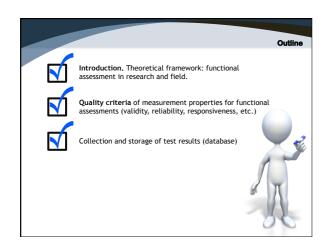


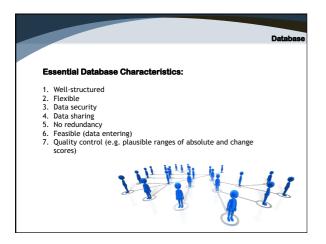


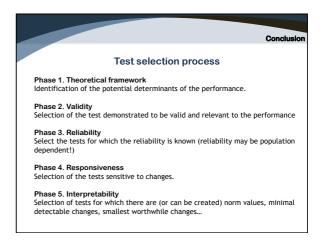


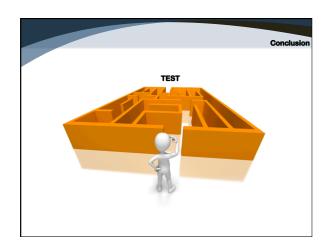


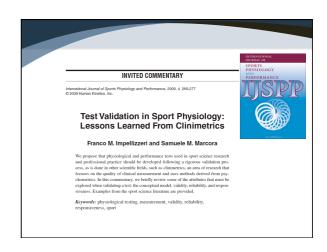

_							
Table III. Iso-inertia	al tests, sorted ap	proximatel	y by coeffic	ent of variation (CV)			
Reference	Participants; number of trials		Method of analysis	Movement; ergometer or instrument	Performance measure ^a	CV (%)	Change in mean (%)
Wiklander &	10 F, 10 M runners; 2	~1h?	?	Horizontal jump; tape		1.8	?
Lysholm ^[34]				5-step jump; tape	2 jumps) ^b	1.5	
				Vertical jump; tape		4.3	
Risberg et al. [6]	12 F, 9 M elite athletes; 2	<1h?	Mean SD	Triple jump; ?	Distance ^c	2.1	?
				Vertical jump; ?	Height ^c	6.8	
			Mean SD	Triple jump; ?	Distance ^c	2.6	-0.6
				Vertical jump; ?	Height ^c	8.6	1.9
	10 M athletes; 3-5	1 athletes; 5-10 sec	?	Ball throw, low and high mass; photocells	Distance (best 2 of 3-5 throws)	2.5, 3.5	?
				Jump, unloaded and loaded; Ergojump	Height (best 2 of 3-5 jumps)	4.3, 6.0	
Ashley & Weiss ^[36]	50 F; 2;	2d	r & SD	Depth jump; Vertec	Height (best of 3 jumps)	3.1	?
				Restricted jump; Vertec		8.0	
Harman et al.[37]	18 M; 3	1-3 min	ANOVA	Vertical jump; AMTI LG6	Peak power ^d	3.3	?
				force platform	Height ^{d,e}	4.7	
Young et al.[38]	17 M athletes; 2	≥1d	?	Vertical jump, standing and striding; white board	Height (best of 3 jumps)	4.8, 3.6	-1.4, 3.5
				Vertical jump, standing and striding; Yardstick		3.8, 4.7	~0.0, 1.4
Bosco et al.[39]		3d SE ? min	SD diff	Squat lift, load = body	Mean power (best of 2 lifts)	3.7	0.8
				mass; Ergopower		5.0	5.4
Avis et al.[40]	53 M; 2	? min	r & SD	Leg press; weighted sled	Work ¹	5.1	1.2
				on rollers	Peak power ^f	6.2	-0.9
Bosco et al.[41]	12 M boxers; 3 practice + 2	1 min	SD diff	Arm flexion, load = 5% body mass: MuscleLab-Bosco	Mean power	5.49	-2.0 ^g
Bassey & Short[42]		~1wk	SD diff	Leg press: pedal + flywheel	Mean power best of >4 rens	6.5	2











"In conclusion, we believe that the application of more rigorous methods for the development and validation of physiological and performance tests would improve the quality of sport science research and professional practice.

... We hope that future investigations will assess all the relevant test attributes presented here, rather than leading to further test proliferation."

